If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+40x=0
a = 24; b = 40; c = 0;
Δ = b2-4ac
Δ = 402-4·24·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40}{2*24}=\frac{-80}{48} =-1+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40}{2*24}=\frac{0}{48} =0 $
| 6^x^-2=1/216 | | g−4=−9 | | 8x+2x-14=26 | | 2(x-4)-18=9-5x | | x/3+6=-21 | | -41=-7+2n | | 15-2w-2=2(w15)-1 | | 8x+16=4x-14 | | 3.7y-18=-4.3y-34 | | 35=7q+7 | | 0.6=t/2+ –0.3 | | 5=5(u-5)-2u | | 18=-3(x+1) | | 5(2x-1)+x+17=11x+12 | | X-7=66-15(x+7) | | 26=2y+16 | | m/2-10=20 | | 7=5/4×0+b | | 4=20-8x | | 8x+2x-16=26 | | 8x+1−6x+5=7x+4−x+3 | | 5w−13=22 | | 5-16y+144=0 | | 3x+2x+4=3x+2(x+2) | | (x)=4x+2 | | 3b+4=5b−8 | | 3(f-86)=39 | | 7/v=-35 | | 4=-7n+4 | | 5x-74+x=180 | | 9(f)=5 | | (6x-7)+(3x+2)=180 |